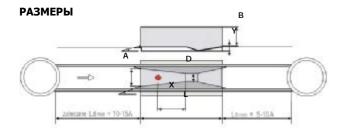
ИЗМЕРЕНИЕ РАСХОДА – Лоток Паршаля + Расходомер FLOWBOX

ПРИМЕНЕНИЕ


Описываемое измерение интенсивности расхода жидкости в гравитационных каналах с прямоугольным сечением на базе измерительного лотка Вентури и ультразвукового расходомера, проводится методом накопления на основании пересчета через расходомер актуального уровня накопления жидкости в лотке на значение интенсивности расхода (показания кратковременного и суммарного расхода). Нормализованным элементом, накапливающим жидкость, является измерительный лоток Паршаля. Размер накопления жидкости в лотке КРV измеряется ультразвуковым датчиком (опционально радарным), установленным над лотком.

Основное условие использования метода – обеспечение ламинарного прохода жидкости через измерительный лоток, а также обеспечение свободного ненарушенного оттока.

ЛОТКА ПАРШАЛЯ

Измерительный лоток (измерительная горловина) Паршаля, согласно с нормой ISO 9826, предназначен для объемного измерения интенсивности расхода в каналах с прямоугольным сечением с гравитационным стоком. Выполнен из кислотоустойчивой стали, что дает возможность проведения измерений согласно диапазонам, поданным в таблице ниже.

Монтаж лотка заключается, как правило, в бетонировании его в подготовленном соответствующим образом прямоугольном канале, где преобладают условия спокойного потока. Такие условия можно получить, в частности, сохраняя соответствующие наклоны и минимальную длину приточного и сточного каналов. При выборе измерительного диапазона стоит помнить, что измерения, проводимые в диапазоне, который является низшим от поданного для данного типа горловины, будут отягощены увеличенной опибкой

Koryto	Q [m³/h]	Α	L	В	D	Х	Υ
P1	1-20	16,75	63,5	24,8	2,54	24,2	2,86
P2	2-48	21,35	77,5	28,6	5,08	27,6	4,28
Р3	3-151	25,88	91,5	49,2	7,62	31,1	5,71
P4	5-470	39,69	152,4	69,6	15,24	41,4	11,43
P5	9-907	57,47	162,6	87,6	22,86	58,8	11,43
P6	11-1640	84,46	286,7	99,06	30,48	91,4	22,9
P7	15-2509	102,6	294,3	99,06	45,70	96,5	22,9
P8	43-3373	120,7	301,9	99,06	61,00	101,6	22,9
Р9	61-5137	157,2	316,9	99,06	91,40	111,8	22,9
P10	162-9000	230,2	346,7	99,06	152,4	132,1	22,9

dimensions in mm

УЛЬТРАЗВУКОВОГО РАСХОДОМЕР FLOWBOX

Ультразвуковой расходомер FLOWBOX используется для измерения кратковременного и суммарного расхода жидкости в гравитационных каналах с использованием измерительного лотка или измерительного слива. Использованный для измерений ультразвуковой метод имеет ряд преимуществ – в частности, не допускает непосредственного контакта измерительного датчика с загрязненной или агрессивной средой.

ХАРАКТЕРИСТИКИ РАСХОДОМЕРА FLOWBOX

- Считывание показаний: кратковременный расход, суммарный расход
- Электрические выходы: 0-20mA, 4-20mA
- о Импульсные выходы импульс каждые 0,1/1м3
- Цифровой выход RS232C/485 Modbus (опция)
- Питание: ~230V, 50Hz или аккумуляторное
- о Потребление мощности <10 VA
- Температура окружающей среды : -10 до +55 С
- Класс защиты корпуса преобразователь: IP65, датчик: IP65 (под заказ IP68)
- Материал корпуса: ABS, датчик: PVC
- о Масса преобразователя: ~1,5 кг
- $_{\odot}$ Узкий угол ультразвукового пучка 5-7 $^{\circ}$
- о Автоматическая компенсация температуры
- о Версия Ех (опция)

ОПЦИОНАЛЬНЫЕ ДОПОЛНИТЕЛЬНЫЕ ФУНКЦИИ

- о Модуль передачи данных с расходомера на расстояние
- Дополнительное качественное измерение параметра проходящей жидкости: pH, кислород, redox, кондуктивность
- Автономное аккумуляторное питание расходомера, опционально с фотовольтаическим элементом
- о Модуль передачи данных с расходомера на расстояние

